
Journal of Applied Mechanics and Technical Physics, Vol. 46, No. 2, pp. 244–249, 2005

TRANSFORMATION OF A BREAKING WAVE

AT A DROP OF A CHANNEL BOTTOM

UDC 532.59A. A. Malysheva and I. A. Malysheva

This paper gives results of an experimental study of incident and reflected waves of the bore type in
the neighborhood of a sharp change in the channel bed level. It is shown that under conditions typical
of accidents at ship locks, the wave height can reach 8 m.
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Introduction. The term breaking waves is used for downstream waves produced by dam break [1]. In
the initial stage, as a rule, a breaking wave has the shape of a classical moving hydraulic jump and then becomes
an undular jump. A moving hydraulic jump is termed a bore [2]. Similar waves are caused by breakdown if lock
gates. In this case, the wave pattern is significantly affected by the presence of a sudden lowering of the downstream
bottom level at the lock site. In particular, under certain conditions, two hydraulic jumps moving one after another
are formed behind the drop [3–5]. Breaking waves are also generated by a tsunami or a tidal wave entering a river,
by landslides of reservoir shores, falls of meteorites or rock fragments, an abrupt stop of a tanker or an inclined
boat lift, wave impingement on a ship deck, etc.

Breaking waves are calculated using the first shallow-water approximation [2–4, 6], Saint-Venant’s equa-
tions [1, 7, 8] and the finite control volume method [9]. The calculation method based on the mathematical model
of [10], which takes into account turbulent mixing in a hydraulic jump, is also promising. This method describes
the real shape of a hydraulic jump, whereas in other methods all five possible shapes of the jump are modelled by
a free-surface discontinuity. Among experimental studies, [11–13] worth noting.

Investigation of the transformation of breaking waves on bottom irregularities is an urgent problem. In the
dam-break problem, this information is necessary for accounting for the effect of local hydraulic resistances. In the
problem of breakdown of a lock gate, of interest is the accident in which there is breakdown of the gate between the
approach channel and the upper chamber with the second gate open (from above) and the third gate closed. This
situation is especially dangerous for a ship that sails from the downstream side and is in the lower chamber at the
moment of the accident.

In the present paper, we give results from experimental studies of the transformation of breaking waves
on a bottom irregularity in the form of a drop that can be used to check various calculation methods. Such
calculations have not yet been performed since the above-mentioned methods require a rather complex adaptation
to this problem.

Experimental Technique. Figure 1 shows a diagram of the experiment and the coordinate system used.
The experiments were performed in a rectangular channel of width 0.2 m. A drop of height b = 0.072 m was at a
distance l = 2.4 m from the right closed end of the channel. The left open end of the channel was attached to a
tank of width 1 m. This simulated the boundary conditions typical of a ship lock ahead of which there is a outside
harbor with a large free-surface area. The initial difference between the free-surface levels h−+b−h+ was produced
by a flat shield located at l1 = 1.21 m upstream of the drop. For the parameter h+ in the initial conditions, it is
necessary to distinguish between the ranges h+ 6 b (“dry bottom” on the segment from the shield to the drop) and
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Fig. 1. Experimental setup (sizes in meters): tank (1), channel (2), flat
shield (3), and drop (4).

h+ > b (“flooded bottom”). The parameters b, l, and l1 did not vary in the experiments. The initial free-surface
levels were determined by measuring needles with an absolute error not higher than 0.05 cm. Head-water depths
were measured from the channel bottom ahead of the drop, and tail-water depths from the bottom behind the drop.

At the time t0 = 0, the shield was removed manually from the channel. The law of its motion was recorded
by a reochord sensor. The deviation of the free surface from the initial level η as a function of time t at specified
points along the longitudinal coordinate x was measured by wavemeters, whose operating principle was based on
the difference in electrical conductivity between water and air. The resolution of the wavemeters was 0.2 mm. The
upper bound of the oscillation frequency recorded by the wavemeters with an error not higher than 10% was 10 Hz.
Photography was also performed. Primary material was processed on a computer.

In the experiment, difficulties arose in measuring the speed of propagation of the waves considered. First of
all, a rigorous definition of the propagation speed can be given only for stationary waves whose shape is unchanged in
a coordinate system moving together with the wave or for self-similar solutions. The stationarity or self-similarity
conditions, strictly speaking, are not satisfied because of energy dissipation. Another complicating factor is the
presence of an unstable roller at the leading edge of a classical hydraulic jump.

In the experiments, the speed of wave propagation is taken to be the speed of motion of an isolated point on
the wave profile. Experimental data were obtained for the point at the middle of the height of the wave leading edge
by measuring the traveling time ∆t of this point in a specified interval of the longitudinal coordinate ∆x between
two fixed wavemeters. Of significance is the coordinate x of the middle of the interval ∆x, by which the measured
values D = ∆x/∆t are normalized. In the experiments, we chose the values of x (downstream) at which the depth
behind the jump was constant. The values of ∆x varied from 20 to 40 cm with other conditions being equal. In
this case, the spread in the measurement data was within the random error due to instability of the hydraulic-jump
roller. Three to four repeated experiments were performed and their results were averred to reduce the random
error for some combinations of parameters. Nevertheless, the experimental error of D was higher than the error in
determining the characteristic depths.

Experimental Results. Figure 2 shows a plot of the law of motion of the lower edge of the shield z∗(t)
(curve 1), from which the time of removal of the shield from water was determined. It did not exceed 0.05 sec. The
figure also gives curves of the free-surface level η(t) at three points on the longitudinal coordinate (curves 2–4). The
wavemeter does not distinguish the directions of wave propagation (in the figure, their leading edge is located on
the left). According to the diagram given in Fig. 1, the waves propagated from left to right. In this example, the
wave height had the largest value among all values obtained for various combinations of parameters.

In the case of an even bottom with h− = 15 cm and h+− b = 5 cm, as in the example considered, a breaking
wave with one hydraulic jump propagated downstream [3, 11]; the mean height of the jump’s leading edge (the
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Fig. 2. Law of motion of the shield (curve 1) and level fluctuations at three characteristic points (curves
2–4) for b = 7.2 cm, h− = 15 cm, and h+ − b = 5 cm: x = 120 cm (2), −41 cm (3), and = 0 (4).

difference between the free-surface levels behind and ahead of the jump ignoring undulations) was a/h− = 0.22. In
the presence of a drop of height b/h− = 0.48, the downstream incident wave also had the shape of one hydraulic
jump. The height of the jump depends on x. In Fig. 2 it is evident that compared to the case of an even bottom,
upstream of the drop (curve 3, x/h− = −2.73), the jump height is 45% larger, directly on the drop (curve 4,
x/h− = 0), this value is 16% smaller, and at a distance downstream of the drop (curve 2, x/h− = 8.0), it is 22%
larger. As in the case of an even bottom, undulations occur behind the leading edge of the jump. The relative
span of the undulations (the difference in level between the first crest and the first trough normalized by the mean
height of the jump) increases downstream: 32% for x/h− = −2.73, 53% for x/h− = 0, and 70% for x/h− = 8.0.
The characteristic period of the undulations is T

√
g/h− = 2.70, and the characteristic length (the distance between

adjacent crests) λ/h− = 2.82 (g is the acceleration of gravity). For a x, the free-surface level reaches a constant
value with time, and in the submerged regime, this value is identical ahead of the drop and behind it (curves 2
and 3 in Fig. 2). In the submerged regime, this value is smaller directly on the drop (curve 4) than ahead of the
drop and behind it. By the definition of [14], the regime of tail and head conjugation is called nonsubmerged if
downstream processes do not influence upstream processes; otherwise, it is called submerged.

In Fig. 2, the following three characteristic times are indicted on the abscissa axis: t1 is the travel time of
the depression wave to the left open end of the channel, t2 is the travel time of the breaking wave to the right closed
end of the channel, and t3 is the travel time of the depression wave to the left end wall of the tank, which models
the outside harbor of a lock (see Fig. 1). At all these times there are qualitative changes in the wave pattern. In
particular, at t2, there is a high water uprush on the wall [15], and a jump having the shape of an undular boron
propagates upstream. From Fig. 2 it follows that the free-surface level corresponding to the undulation crests in
the reflected wave, exceeds the initial head-water level, which can cause flow of a large mass of water over the lock
side walls [13].

We denote by has the constant depth behind the jump before the arrival of the reflected wave at the
wavemeter. In the interval x 6 0, this quantity was measured from the bottom to the drop, and for x > 0, from the
bottom behind the drop. Figure 3 gives the dependences of has on h+ for four values x 6 0: at the shield location
(curve 4), directly above the drop (curve 1), and at two intermediate points (curves 2 and 3). The depth h+ was
measured from the bottom behind the drop; therefore, its value can be larger than the initial head-water depth h−
(measured from the bottom ahead of the drop) by the height of the drop (see Fig. 1).

From Fig. 3 it follows that for h+ 6 b and all x 6 0, the value of has does not depend on h+. At the shield
location (curve 4), this independence holds over the wider interval h+ 6 b + 0.138h− (dashed curve 6), and the
numerical coefficient is the same (0.138) as in the case of dam break above an even bottom [2]. This is the upper
boundary of the nonsubmerged regime. In the case of an even bottom with h+ 6 b + 0.138h−, a depth equal to
4h−/9 is established at the shield location [2]. Curve 4 also confirms this theoretical result in the case of a bottom
with a drop if the shield is located far away upstream.
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Fig. 3. Asymptotic depths behind incident waves for x 6 0 (b = 7.2 cm, h− = 15 cm, and h+ − b = 5 cm):
x = 0 (1), −11 (2), −41 (3), and −121 cm (4); the drop height and the theoretical upper boundary of the
nonsubmerged regime are shown as 5 and 6, respectively.

Fig. 4. Asymptotic depths behind incident waves has (curves 1–3) and behind the reflected wave h1
as (curve 4)

for x > 0 (b = 7.2 cm, h− = 15 cm, and h+ − b = 5 cm): x = 40 (1), 80 (2) and x = 150 cm (3 and 4);
the drop height is shown as 5.

The depth above the drop is smaller than the depth at the shield location for all values of h+. According to
the data given in Fig. 3, in the interval h+ 6 b, the ratio of these depths is constant and equal to 3/4. Thus, the
experiments showed that in an infinitely long channel at sufficiently large times and h+ 6 b, the flow is determined
by two characteristic depths: the critical depth h∗ = 4h−/9 at the shield location and the depth h0

∗ ≈ h∗/1.33
above the drop if the distance from the shield to the drop is large enough. The experiments of [12] also showed that
if the shield is located directly above the drop, the so-called second critical depth h∗∗ ≈ h∗/1.3 is established there.

Figure 4 gives plots of the function has(h+) for three values x > 0 (behind the drop) and a plot of the
function h1

as(h+) for x = 150 cm (h1
as is the average depth behind the reflected wave). For h+/h− > b/h−, the

experimental points for various values of x for incident waves lie on a universal curve, indicating the existence of
a self-similar flow regime. For h+/h− < b/h−, the experimental points corresponding to x = 40 cm are located
below the points corresponding to large values of x. This is a consequence of the local depth reduction due to
the jet flow incident from the drop onto the channel bottom. For reflected waves, self-similarity held for all values
0.27 6 x/h− 6 10. Figure 4 gives data only for x/h− = 10.

According to theory [3, 4] and experimental data [12], for the case of the shield location directly above the
drop, breaking waves with one or two jumps moving one after another can propagate behind the sill. The same
wave shapes were observed in the present experiments with the shield location upstream of the drop. For this case,
as a first approximation, the boundary separating the regions of existence of these wave shapes can be determined
by the algorithm described in [3, 4] or by the plot given in [12, p. 68].

The dependences of the propagation speed of the wave leading edge D on the depth behind the shield h+

for two values of x are given in Fig. 5. For x < 0, the dependence is almost the same as that for the case of an
even bottom [16]. In particular, for h+ < b, the wave on the segment x < 0 propagates over the dry bottom. In
this case, according to theory [2], D = 2

√
gh−. As in the case of an even bottom [16], in the present experiments,

a smaller value close to the maximum propagation speed of solitary waves was obtained: D ≈ c∗∗ = 1.3
√

gh−. The
measurement error D is shown by a section of a vertical straight line. On the segment x < 0, this speed is constant.
For h+ > b, the wave on the segment x < 0 propagates over the flooded bottom. In this case, experimental data
are in fairly good agreement with theoretical data [2].
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Fig. 5. Propagation speed of the leading edge of the incident wave versus the
initial depth behind the drop for b = 7.2 cm, and h− = 15 cm: x = −26 (1) and
135 cm (2); the drop height is shown as 3.

For rather large x > 0 and h+ > b, the data obtained for D(h+) also differ only slightly from theoretical and
experimental results for the case of the shield location above the drop [12]. For h+ < b, the location of the shield
has a significant effect on D. When the shield is located directly above the drop, the propagation speed of the wave
leading edge increases more considerably with decrease in h+ than in the experiments discussed here.

Conclusions. Experimental data were obtained for values of x and t such that the friction on the walls
has an insignificant effect on wave processes. Therefore, conversion from the model to a full-scale object can be
performed using the Froude criterion. In the example considered, the parameters h− and b in the scale 1 : 100
correspond to the parameters of the ship lock of the Novosibirsk hydroelectric power station. The obtained data
show that in the accident described above, the first free-surface elevation in the incident wave taking into account
undulations reaches 5.8 m. The second rise in the level in the reflected wave is even larger and reaches 7.8 m taking
into account undulations. Continuous flow over the chamber sides is also possible.
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